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Abstract. We adopt the group velocity approach to the issue of tunneling time in two configurations of
magnetic barrier structures, which are arranged with identical or unidentical building blocks. The effects
of an external electric field are also taken into account. The tunneling time in magnetic barrier structures
is found to be strongly dependent on the magnetic configuration, the applied bias, the incident energy as
well as the longitudinal wave vector. The results indicate that for electrons with equal energy but different
incident angles, the tunneling processes are significantly separated in time within the same magnetic barrier
structure. In the configuration arranged with unidentical building blocks, there exists obvious asymmetry
of tunneling time in two opposite tunneling directions. Such a discrepancy of the tunneling time varies
distinctly with the longitudinal wave vector and the applied bias.

PACS. 73.40.Gk Tunneling – 75.75.+a Magnetic properties of nanostructures – 73.23.-b Electronic
transport in mesoscopic systems

1 Introduction

Recently there has been an increasing interest in the trans-
port properties of a two-dimensional electron gas (2DEG)
subjected to perpendicular inhomogeneous magnetic fields
on a nanometer scale [1–12]. Such magnetic fields can be
patterned experimentally in the desired shape by means of
deliberately shaping or curving the 2DEG [2], or covering
the heterostructures with stripes of ferromagnetic or su-
perconducting materials [3,4]. Theoretically, studies have
indicated many intriguing phenomena caused by nonuni-
form magnetic fields, such as commensurability effects [5]
and magnetic edge states [6]. Proposed and realized mag-
netic structures include magnetic dots, antidots, steps,
wells, barriers, wires, rings, periodic and quasiperiodic su-
perlattices. These quantum structures greatly extend the
field of low dimensional quantum systems. Among them,
the magnetic-barrier (MB) tunneling structure proposed
by Matulis et al. [7], has been investigated widely [7–11]
because of the novelty and potential applications as mag-
netic field sensors, magnetic memory elements, and nano-
magnetometers [8]. The quantum transport through a MB
structure is a 2D process in nature and possesses the wave
vector filtering properties [7,8,11].

With the advance on miniaturizing tunneling semicon-
ductor devices, the time aspect of tunneling process has
been the focus of much research in the last decade. Apart
from its intrinsic quantum mechanics interest, the signif-
icance of tunneling time comes from the requirement of

a e-mail: fzhai@castu.tsinghua.edu.cn

understanding the tunneling dynamics in high-speed de-
vices [13–29]. Therefore, even for a simple single-barrier
structure, the tunneling time has been studied extensively
by various theoretical approaches, such as phase-delay
method [13], dwell time approach [14], Larmor Clock time
and its generalizations [15], and wave packets evolvement
method [16,17]. In double-barrier heterostructures, many
effects on the tunneling time were examined, which in-
clude position-dependent effective mass [18], spin-orbit
coupling [19], and structural asymmetry [20,21]. In a
finite superlattice, the superlattice-tunneling-time limit
was observed experimentally [22] and confirmed theoreti-
cally [23]. Recently, in semimagnetic semiconductor multi-
layers Guo et al. found obvious spin separation features in
time [24]. Up to now, although there exists a great deal of
published literature on the tunneling time, how to define a
physical tunneling time is still the subject of much contro-
versy. The reason is that time is not an operator in quan-
tum mechanics [17]. The time characteristics introduced
in the above-mentioned methods really describe different
aspects of electron dynamics and can be extracted from
corresponding optical or transport experiments.

How long does an electron tunnel through a magnetic-
modulated quantum structure? This question is much of
importance both from a theoretical and from a practical
point of view. To the best of our knowledge, there is no
work dealing with it. In the present paper, we explore
characteristics of the tunneling time in MB structures,
which consist of two identical (or unidentical) magnetic
barriers and magnetic wells. The results indicated that
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the tunneling time exhibits remarkable dependence on the
longitudinal wave vector as well as the applied bias. In MB
structures arranged with unidentical building blocks, the
discrepancy of tunneling time between opposite tunneling
directions is examined.

2 Method

The system considered here is a 2DEG in the presence
of a perpendicular magnetic field (parallel to z direction)
and an external electric field F (along the x direction).
The magnetic field is homogeneous in the y direction and
varies along the x axis. The MB quantum structure we
investigate is composed of two building blocks A and B
separated by a zero magnetic-filed region with width l,
each of which includes one magnetic barrier with height Bi

and width di, one magnetic well with depth −Bi and width
di (i=1, 2). The rectangular magnetic-field profile can be
viewed as the limit of a small distance between the 2DEG
and the ferromagnetic thin film [12].

Within the effective-mass approximation such a system
is described by the Hamiltonian

H =
1

2m∗ (P + eAi)2 − eVax

L
, (1)

where m∗ is the effective mass of the electron, P is the
momentum operator, e is the proton’s charge, Ai = (0,
Ai(x), 0) is the vector potential given in the Landau
gauge, and Va = FL (L = 2d1 + 2d2 + l) is the ap-
plied bias. Using the cyclotron frequency ωc = eB0/m∗

and the magnetic length lB =
√

~/eB0, we express all
quantities in dimensionless units, for example, the co-
ordinate R → lBR, the energy E → ~ωcE, the time
τ → ω−1

c τ . Taking m∗= 0.067 m0 (m0 is the free electron
mass) for the GaAs 2DEG and an estimated magnetic field
B0 = 0.1 T, we have lB = 813 Å, ~ωc = 0.17 meV [7], and
ω−1

c = 3.81 × 10−12 s. The total wave function can be
written as Φ(x, y) = eikyyΨ(x), where Ψ(x) satisfies the
reduced one-dimensional Schrödinger equation

−1
2

d2Ψ

dx2
+ Ueff (x, ky, Va)Ψ = EΨ . (2)

Note that the effective potential Ueff (x, ky , Va) = 1
2 [ky +

Ai(x)]2 − eVax
L depends on the longitudinal wave vec-

tor ky, the applied bias Va as well as the profile of the
local magnetic field. In equation (1) we neglect the Zee-
man term g∗µBBi(x)σz/2 [30], where g∗ is the effective
g-factor (in GaAs 2DEG g∗ = 0.44), µB the Bohr magne-
ton, σz = +1/ − 1 for electrons with up/down spin. The
reason is that the absolute value of such a term is much
smaller than that of other terms in Ueff (the ratio between
them is about g∗m∗ /2m0 = 0.015).

We consider the situation that electrons tunnel
through the MB structure from the left (x < 0) to the right
(x > L). The wave functions in the left and right region
can be written as ΨL(x) = [exp(ikLx) + r exp(−ikLx)]/s,

ΨR(x) = exp(ikRx). Here, r, s are the reflection and
transmission amplitudes, kL =

√
2[E − Ueff (−∞)] and

kR =
√

2[E − Ueff (+∞)] are the wave vectors of incident
(reflection) and transmission waves, respectively. In the
present paper, we adopt the group velocity approach [25]
to evaluate the tunneling time. From the semiclassical
point of view, the group velocity vg(x) can be defined as
the ratio between the averaged current probability density
J [J = Im(Ψ∗ dΨ

dx ), in units of ~

m∗lB
] and the probability

density |Ψ |2 of the particle. Note that J is conserved dur-
ing the tunneling process and thus position-independent.
As a result, we have J = kR. Further, the tunneling time is

τ =

L∫
0

dx/vg(x) =

L∫
0

dx |Ψ |2 /J . (3)

This intuitive definition, although apparently based on a
semiclassical interpretation, has been shown to be equiv-
alent to the Bohm tunneling time [17]. Numerical sim-
ulations on this definition indicated the agreement with
experimental results [26].

Introducing five dimensionless variables y1 = ReΨ ,
y2 = Im Ψ , y3 = (1/kR)dy1/dx, y4 = (1/kR)dy2/dx,

y5 =
L∫
x

dx′(y2
1 + y2

2), one can obtain the following first-

order ordinary differential equations (ODEs)

dy1

dx
= kR y3,

dy3

dx
= 2(Ueff − E) y1/kR,

dy2

dx
= kR y4,

dy4

dx
= 2(Ueff − E) y2/kR,

dy5

dx
= − (y2

1 + y2
2) (4)

with initial value

(y1, y2, y3, y4, y5) |x=L−= (1, 0, 0, 1, 0). (5)

We integrate the ODEs (4), (5) to get the vector (y1, y2,
y3, y4, y5)|x=0+ by using of Gear’s stiff method [31]. The
tunneling time τ and transmission amplitude s (thus the
transmission coefficient kR

kL
|s|2) can be evaluated by

τ = y5(0+)/kR (6)

and

s=2/

{[
(y1(0+)+

kR

kL
y4(0+)

]
+i

[
y2(0+)− kR

kL
y3(0+)

]}
.

(7)

In deriving equations (5, 7), the continuity of wavefunc-
tion Ψ and its derivative dΨ

dx is used.

3 Results and discussion

We evaluate the tunneling time of a conduction elec-
tron traversing two different configurations of magnetic-
modulated structures based on a GaAs 2DEG. One is
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Fig. 1. The tunneling time for electrons traversing a “sym-
metric” MB structure at several incident angles under zero
and two applied biases. The structure depicted in the inset of
panel (n1) is composed of two identical blocks A (B1 = 0.1 T
and d1 = 1) separated by a zero magnetic-field region with
width l = 3. The left and right panels correspond to θ > 0 and
θ 6 0, respectively. Va = 0, 0.5, 1.0.

an arrangement with two identical building blocks A, the
other is composed of two different blocks A (B1 = 0.1 T,
d1 = 1) and B (B2 = 0.3 T, d2 = 1). In both cases, there
exists a zero magnetic-field region with width l=3 within
two building blocks. For convenience the structures are
labeled with “symmetric” or “asymmetric” according to
the symmetry of the corresponding vector potential.

In Figure 1 the “symmetric” structure is studied. The
tunneling time is plot as a function of the electronic energy
at several incident angles and under the applied biases
Va = 0, 0.5, 1.0. Here the incident angle is relative to the
x direction [θ = sin−1(ky/

√
2E)] and the bias is given in

units of ~ωc/e. The left and right panels correspond to the
case of ky > 0 and ky 6 0, respectively. One remarkable
fact is that for electrons traversing the considered struc-
ture with different incident angles, the distinction of the
tunneling time can approach several orders of magnitude.
Therefore, electrons incident at different angles will spend
quite different time through the same structure, and are
separated in time if they begin tunneling simultaneously.
In the case of normal incidence (θ = 0) and under zero
bias, the tunneling time decays essentially with the inci-

dent energy. If instead of oblique crossing with θ > 0, as
shown in Figure 1(p1), the curve displays weak oscillations
and has several kinks (local minima), which shift towards
high-energy region with θ increasing. When electrons are
incident at a negative θ, however, the kink appears only
at large |θ|, see Figure 1(n1). At each negative θ, when
the incident energy is lower than some value the tunnel-
ing time is shorter than the counterpart of θ = 0. Such
a variation is in contrast to the case of positive θ where
the tunneling time always prolongs significantly with θ in-
creasing. Under a finite bias, the discrepancy of tunneling
time is lessened for electrons with different negative inci-
dent angles. Whereas in the case of θ > 0, the difference
is still obvious. Moreover, one can observe the crossing
between the curves for different positive incident angles
[see Fig. 1(p3)], which is not seen in the absence of an
applied bias. With the bias increasing, the tunneling time
is drastically shortened and the kinks move towards the
low-energy region.

All features described above reflect the structure of
the effective potential to some extent. For the “symmet-
ric” MB structure under zero bias, the corresponding pro-
file of Ueff seen by electrons with ky > 0 is a symmet-
ric electric double-barrier structure and the middle region
with B = 0 acts as a quantum well. The barriers go up
monotonously as ky increases. In general, a larger inci-
dent energy will shorten the tunneling time since it means
a larger initial velocity. This is true in the case of normal
incidence where the height of barriers is invariant with
the incident energy, but is not suitable for the case of a
certain positive angle. The reason is that for θ > 0 the
barriers are also rising with the energy increasing due to
the augment of corresponding ky (recalling the relation
ky =

√
2E sin θ). Usually, the higher the barriers are, the

longer the Bohm tunneling time is. The interplay of these
two factors leads to the appearance of kinks. For ky < 0
the effective potential is multiple wells in which the trans-
mission is through states above quantum wells [7]. So the
tunneling time for a negative θ may be shorter than that
of θ = 0 in some energy region. With |ky| increasing, the
effective potential exhibits complex variation and the wells
become deeper. Instead of the obstacle effect of the bar-
riers, the factor leading to the prolonging of the tunnel-
ing time is now the binding of wells on electrons. In the
presence of an external electric field, the electrons are ac-
celerated and the tunneling time is thus shortened signifi-
cantly. In addition, the symmetry of the effective potential
is greatly changed by the applied bias [24], which results
in rich electric-field-dependent behaviors of the tunneling
time.

Figure 2 shows the variation of tunneling time with
the incident energy for electrons traversing the “asym-
metric” structure at zero and several positive incident
angles. In this case the effective potential behaves like
an asymmetric electric double-barrier structure where the
asymmetry is introduced by the height difference between
two building blocks. The left panels correspond to the
left-to-right direction of tunneling, while the right ones
refer to the right-to-left tunneling which is equivalent to
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Fig. 2. The tunneling time for electrons traversing an “asym-
metric” MB structure at zero and several positive incident an-
gles under zero and two applied biases. The structure depicted
in the inset of panel (p1) is composed of a block A (B1=0.1 T
and d1= 1)and a block B (B2=0.3 T and d2= 1) separated by
a zero magnetic-field region with width l=3. The left and right
panels correspond to left-to-right and right-to-left tunneling
direction, respectively. Note that the right-to-left tunneling is
equivalent to the left-to-right tunneling through the structure
depicted in the inset of panel (n1). Va=0, 0.5, 1.0.

the left-to-right tunneling through the structure depicted
in the inset of Figure 2(n1). One can see pronounced dif-
ference of the tunneling time between these two situations.
Several features are summarized here. (1) The left-to-right
tunneling time τl→r is usually much greater than the cor-
responding τr→l. This fact can be understood from the

definition of the Bohm tunneling time [τ =
L∫
0

dx |Ψ |2 /kR

with Ψ |x=L= 1, see Eq. (3)]. For the left-to-right tunnel-
ing through an asymmetric double-barrier structure, if the
right barrier is higher, the module of the wave function
decays more rapidly to the final value 1. Therefore, the
probability of finding the particle in the tunneling struc-
ture is larger, which leads to longer tunneling time. (2) At
zero bias, τl→r oscillates weakly with the incident energy,
which is very similar to that in the “symmetric” struc-
ture. The right-to-left tunneling time τr→l, however, dis-
plays strong oscillations and several sharp dips. In general,
the tunneling time has relative minima at the value of inci-
dent energy where the transmission coefficient has relative
maxima [20]. The reason is that at resonance the particle

Fig. 3. The tunneling time for electrons traversing the struc-
ture as that examined in Figure 2 at zero and several negative
incident angles under zero and two applied biases. The left
and right panels correspond to left-to-right and right-to-left
tunneling, respectively. Va=0, 0.5, 1.0.

has maximal probability to appear within the tunneling
region. With the bias increasing, the oscillation of τr→l is
suppressed and the dips become shallower. (3) For τr→l,
even at zero bias there exists notable crossing between
the curves for different incident angles. In the case of left-
to-right tunneling, the crossing is not obvious and only
occurs between large incident angles under some biases.
This indicates that either with or without the influence of
an applied bias, electrons with different positive incident
angles during tunneling from the left to right will be more
separated in the time scale than the right-to-left case.

As a complement of Figure 2, Figure 3 presents the
case of θ 6 0. Comparing with the case in the “sym-
metric” structure, one can see that the tunneling time
in the “asymmetric” structure exhibits apparent decay-
ing with the incident energy. Note that with |θ| increas-
ing, both τl→r and τr→l are usually shortened and greatly
lower than the tunneling time of the normal incidence,
which is opposite to the counterpart in the “symmet-
ric” structure. The exception of the observation happens
at large incident energy where the crossing phenomenon
appears, or at large |θ| and under zero bias where the
tunneling time may be greater than that of θ = 0. At
negative θ with large absolute value (for example −75◦),
there are one or several incident energies for which the



Feng Zhai et al.: Tunneling time in magnetic barrier structures 151

tunneling time has no difference between both directions.
Accordingly, the geometric asymmetric structure becomes
a symmetric one with respective to the tunneling time. For
positive θ no such transition occurs and the structure is
completely asymmetric regarding the tunneling time.

Finally, we would like to point out that although our
consideration of the rectangular magnetic-barrier struc-
tures gives only a qualitative picture, nevertheless the time
characteristics mentioned above should be present in the
more realistic cases with barriers of smooth shape. Indeed
these features do not depend on the actual shape of the
magnetic-barrier but only on the presence of the barrier
in the effective potential Ueff (x, ky , Va). In addition, as we
have stated, up to now how to define a physical time is
still in controversy. Different definitions of the tunneling
time reflect different aspects of electron dynamics, thus
give rather different results even for a single electric bar-
rier. Among them the Bohm tunneling time is shown to be
in good agreement with some experiments (see Ref. [26]).
Therefore, our work is expected to give meaningful results
and can reflect one aspect of dynamical behaviors in the
considered structure.

4 Conclusions

In summary, we present a feasible numerical method for
tunneling time calculation in magnetic barrier structures
based on the group velocity concept. The results reveal
pronounced separation in time among the tunneling pro-
cesses for electrons with different longitudinal wave vec-
tor. At a positive incident angle, the tunneling time differs
significantly from that at a negative one with the same
absolute value. The distinction embodies not only in the
order of magnitude, but also in the variation with inci-
dent energy and with the bias. In the structure arranged
with identical magnetic barriers and wells, an applied bias
will reduce the degree of separation in time. For electrons
tunneling through the structure composed of two different
building blocks, the typical feature is that the tunneling
time is related to the direction of the incoming electrons.
The discrepancy for opposite directions in the time scale
shows complex variation with the incident energy and de-
pends strongly on the incident angles as well as the exter-
nal electric field.

This work was supported by the National Natural Science
Foundation of China (Grant No. 10004006) and by the
National Key Project of Basic Research Development Plan
(Grant No. G2000067107).

References

1. M.A. McCord, D.D. Awschalom, Appl. Phys. Lett. 57,
2153 (1990)

2. C.L. Foden, M.L. Leadbeater, J.H. Burroughes, M.
Pepper, J. Phys. Cond. Matt. 6, L127 (1994)

3. M.L. Leadbeater, S.J. Allen, Jr., F. DeRosa, J.P. Harbison,
T. Sands, R. Ramesh, L.T. Florez, V.G. Keramidas, J.

Appl. Phys. 69, 4689 (1991); K.M. Krishnan, Appl. Phys.
Lett. 61, 2365 (1992); W. Van Roy, E.L. Carpi, M. Van
Hove, A. Van Esch, R. Bogaerts, J. DeBoeck, G. Borghs,
J. Magn. Magn. Mater. 121, 197 (1993); R. Yagi, Y. Iye,
J. Phys. Soc. Jpn 62, 1279 (1993)

4. A.K. Geim, Pis’ma Zh. Eksp. Teor. Fiz. 50, 359 (1989)
[JETP Lett. 50, 389 (1990)]; S.J. Bending, K. von Klitzing,
K. Ploog, Phys. Rev. Lett. 65, 1060 (1990); A.K. Geim,
I.V. Grigorieva, S.V. Dubonos, J.G.S. Lok, J.C. Maan,
A.E. Filippov, F.M. Peeters, Nature (London) 390, 259
(1997)

5. F.M. Peeters, P. Vasilopoulos, Phys. Rev. B 47, 1466
(1993); H.A. Carmona, A.K. Geim, A. Nogaret, P.C. Main,
T.J. Foster, M. Henini, Phys. Rev. Lett. 74, 3009 (1995);
P.D. Ye, D. Weiss, R.R. Gerhardts, M. Seegar, K. von
Klitzing, K. Eberl, H. Nickel, Phys. Rev. Lett. 74, 3013
(1995); S. Izawa, S. Katsumoto, A. Endo, Y. Iye, J. Phys.
Soc. Jpn 64, 706 (1995)

6. H.-S. Sim, K.H. Ahn, K.J. Chang, G. Ihm, N. Kim, S.J.
Lee, Phys. Rev. Lett. 80, 1501 (1998); J. Reijniers, F.M.
Peeters, A. Matulis, Physica (Amsterdam) E 6, 759 (2000);
A. Nogaret, S.J. Bending, M. Henini, Phys. Rev. Lett. 84,
2231 (2000); H.-S. Sim, G. Ihm, N. Kim, K.J. Chang, Phys.
Rev. Lett. 87, 146601 (2001); J. Reijniers, F.M. Peeters,
J. Phys. Cond. Matt. 12, 9771 (2000); S. Badalyan, F.M.
Peeters, Phys. Rev. B 64, 155303 (2001)

7. M. Matulis, F.M. Peeters, P. Vasilopoulos, Phys. Rev. Lett.
72, 1518 (1994)

8. Y. Guo, B.L. Gu, W.H. Duan, Y. Zhang, Phys. Rev. B
55, 9314 (1997); Y. Guo, B.L. Gu, Z.Q. Li, J.Z. Yu, Y.
Kawazoe, J. Appl. Phys. 83, 4545 (1998); Y. Guo, B.L.
Gu, Z.Q. Li, J.L. Zhu, Y. Kawazoe, J. Phys. Cond. Matt.
10, 1549 (1998)

9. M. Johnson, B.R. Bennett, M.J. Yang, M.M. Miller, B.V.
Shanabrook, Appl. Phys. Lett. 71, 974 (1997); A.K. Geim,
S.V. Dubonos, J.G.S. Lok, I.V. Grigorieva, J.C. Maan,
L.T. Hansen, P.E. Lindelof, Appl. Phys. Lett. 71, 2379
(1997); V. Kubrak, F. Rahman, B.L. Gallagher, P.C. Main,
M. Henini, C.H. Marrows, M.A. Howson, Appl. Phys. Lett.
74, 2507 (1999)

10. Z.Y. Zeng, L.D. Zhang, X.H. Yan, J.Q. You, Phys. Rev. B
60, 1515 (1999)

11. Y. Guo, H. Wang, B.L. Gu, Y. Kawazoe, Phys. Rev. B
61, 1728 (2000); Y. Guo, B.L. Gu, Z. Zeng, J.Z. Yu, Y.
Kawazoe, Phys. Rev. B 62, 2635 (2000)

12. I.S. Ibrahim, F.M. Peeters, Phys. Rev. B 52, 17 321 (1995)

13. D. Bohm, Quantum Theory (Englewood Cliffs, NJ: Pren-
tice Hall, 1951), pp. 257–261; E.P. Wigner, Phys. Rev. 98,
145 (1955)

14. F.T. Smith, Phys. Rev. 118, 349 (1955)
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